
Classifica(on: INTERNAL

Catena-X

Backward Compatibility Guide 2025
Saturn Release

Version 0.8 – Preview

Classifica(on: INTERNAL

Table of Content

Disclaimer ... 3

Purposed of this document ... 3

Introduction ... 4

Backward Compatibility Motivation ... 4

Challenges .. 4

Expectations ... 5

Backward Compatibility & Certification ... 6

Compatibility per Capability ... 7

Technology Capabilities ... 7
Sovereign Data Exchange (Data Space Protocol) .. 7
Self-Sovereign Identity .. 9
BDRS & Connector Discovery Service ... 10
Digital Twin Registry - Semantics ... 11
Business Partner Data Management ... 15

Business (Use Case) Capabilities .. 17
API Changes .. 17
Data Model Adjustments .. 18
Access Policies and Usage Policies ... 20
Business Applications .. 23

Technical Overview on Compatibility .. 25

Classifica(on: INTERNAL

Disclaimer
The current document version (0.8) is still work in progress. However, it already
highlights major areas of impact.

Purposed of this document
Change management / backwards compatibility is a concept that is addressed by
multiple diFerent product teams / expert groups. However, compatibility is only given in
the tight conceptual integration across components.

This document provides a consolidated view on the backward compatibility of the CX-
Saturn release and provides guidance on how Catena-X participants need to prepare
themselves for the CX-Saturn release.

Classifica(on: INTERNAL

Introduction
Backward compatibility is an essential requirement of most productive IT solutions.
Especially in complex, multi-enterprise environments, a dedicated release date cannot
be fixed across the whole ecosystem. There will not be a centrally coordinated upgrade
day for such an ecosystem. Instead, participants may decide to stay on a previous
version of any relevant ecosystem component.

Backward Compatibility Motivation

Challenges
Catena-X is an innovation initiative that is highly influenced by the needs and business
pains of its members. It does not have a history of decade(s) of development and
maturity but is still evolving. At the same time, data providers and data consumers have
invested in implemented solutions based on Catena-X and relying on its well-
functioning. Business Application Providers, Enablement Service Providers and Core
Service Provider have gone through development, testing and certification.

With the next major release (Saturn), Catena-X is pushing new innovations &
adjustments into the ecosystem but all parties need to ensure operational stability and
investment security to its (productive) stakeholders is given.

As an overall guiding principle we state:
Operational stability for productive participants always outweighs new feature delivery.

Classifica(on: INTERNAL

Expectations
As the Catena-X ecosystem continues to be adopted by various participants of the
automotive supply chain, operational stability is of utmost importance. Companies rely
on Catena-X and even physical shipping processes may be negatively impacted by
software defects. Therefore, breaking changes are not an appropriate mechanism,
therefore we are rather following the “1+1 Release Schedule” paradigm.

Specifically, 1+1 Release Schedule means:

• Every participant in the network is allowed to use either the current major release
version or the previous major release version (e.g. Jupiter or Saturn)

• To ensure overall CX network stability, there MUST NOT be breaking changes at
any time (as it would break the participants’ communication)

• Major changes will be introduced via new major versions on various levels (API,
AAS sub model), not as update into a minor version

• Clear communication of deprecation date well in advance is needed if new
versions are introduced
(with introduction of each new major version, it will also be communicated for
how long the former versions will be supported)

• All software component versions (provider, consumer side) need to be capable of
identifying the version of the remote component they are communicating with
and both need to agree on a common denominator to ensure compatibility

• An old software component version that obviously is not aware of a newer version
still needs to be capable of communicating with this newer version or an older
version that is provided by the communication partner

Classifica(on: INTERNAL

Backward Compatibility & Certification
With the release of CX-Saturn, CX-Jupiter is still a valid and supported release as
elaborated above. However, there are a few implications when it comes to certification:

• After the point of the CX-Saturn release into the community, new solutions
cannot be certified against CX-Jupiter anymore. With the release of CX-Saturn,
solutions can only be certified against this newest version.

• A solution which has already been certified against CX-Jupiter has to be operable
without any changes. A solution certified for CX-Saturn therefore MUST be able
to integrate with an unchanged Jupiter certified solution providing the expected
Jupiter-like behavior.

• (Optional) A CX-Jupiter certified solution MAY be re-certified against CX-Saturn
and the newest set of standards, but the new CX-Saturn certificate MUST assure
compatibility with a CX-Jupiter certified solution.

• Only solutions which are certified against CX-Saturn are allowed to advertise with
a “CX-Saturn certified” label.

Classifica(on: INTERNAL

Compatibility per Capability

Technology Capabilities

Sovereign Data Exchange (Data Space Protocol)

Expectation towards Data Exchange according to Catena-X Release Strategy
In the 25.09 release (CX-Saturn) backwards compatibility to the EDC of 24.09 (CX-
Jupiter) is expected. This means that data providers have the freedom to decide if they
oFer already EDC assets in the network based on CX-Saturn release, or if they still
provide their oFers according to the CX-Jupiter release. The same is true for consumers;
they can freely choose if they deploy/operate EDC already based on CX-Saturn or still on
CX-Jupiter release. A newer consumer connector needs to be able to initiate an
interaction based on the DSP 2025.1 version. However, it needs to also be able to
successfully communicate with the data provider if the data provider is still on Jupiter
and does not support protocol version negotiation.

How Backwards Compatibility is enabled in Data Exchange
A Saturn based connector MUST provide access via the new DSP protocol 2025-1 as well
as the established DSP protocol 0.8 (CX-Jupiter). Depending on the role in the
interaction, the connector has to react diFerently to an exchange partner using a Jupiter-
certified stack.

For a new provider connector, the situation is quite easy. A connector MUST implement
the diFerent protocol versions in separate endpoint sub-trees, e.g., the protocol version
0.8 has as root path for all DSP endpoint the path https://provider.com/api/v1/dsp,
whereas the root path for the 2025-1 DSP endpoints is
https://provider.com/api/v1/dsp/2025/1. As the api root path for the old version has not
been moved, an old connector naturally calls the old api sub tree and the provider
connector can detect the call on the old protocol and act accordingly.

For a new consumer connector, the version to use has to be explicitly stated in the call
to the management api. The provider connector has a metadata endpoint that provides
information on supported versions and the root path for that version. It is in the apps
responsibility to call the connector with the right protocol version parameters. As for an
old provider connector, the Saturn app has to choose the old protocol and execute the
dsp call explicitly with that version. All new connectors need to provide version
metadata, so missing metadata has to be interpreted as an old connector only
supporting 0.8 version.

https://provider.com/api/v1/dsp
https://provider.com/api/v1/dsp/2025/1

Classifica(on: INTERNAL

In the reference implementation, there is support for that by a consumer connector
functionality, that does the extraction of the version information and that provides the
exact parameter to be used by a consumer app, but this is convenience of the reference
implementation, not standardized behavior.

Another topic is the compatibility of data oFers, the new connector version comes with
new features, new policy constraints or the non-finite push transfers. Using these on the
provider side could lead to hiccups on the consumer side, as the contract oFers might
be misunderstood. In the best case, they are filtered out properly on the consumer side,
but the behavior of apps is not predictable. To mitigate this risk of unpredictability, the
chapter “Usage Policies” gives advise how data oFers need to be provided in Saturn
based connectors.

What does it mean for Data Provider & Data Consumers (what do they need to do or be
aware of)
The awareness is only relevant for Saturn-certified participants as they have to act,
especially on the consumer side. As is our understanding today, the provider side has to
support both versions and act passively according to the called version endpoint. The
consumer has to implement version awareness in order to act Saturn-certifiable.

A provider has to consider his consumers in the sense, that he might need knowledge on
the opposite sites stack to provide an adequate contract oFer, i.e., he should only use
new features if he is sure, that the consumer can handle them. If not known, he should
stick to, e.g., the old policy setup, or only use existing transfer types from the past

Classifica(on: INTERNAL

Self-Sovereign Identity

Expectation towards Self-Sovereign Identity according to Catena-X Release Strategy
There are productive participants in the network that have already received a digital
identity and various verifiable credentials such as membership credential.

A participant is not actively required to renew / update its digital identity or verifiable
credentials. In case of a required technical update on the Core Service Provider side, it
will not aFect any existing communication that is already setup.

How Backwards Compatibility is enabled in Self-Sovereign Identity
- DCP 1.0 and other requirements from CX-0149 will be adopted by all existing and

new wallets, hence no backward compatibility issues
- Backwards compatibility to Jupiter-Connectors ensured by requiring wallets to

support DCP v0.8.1 presentation flow (in addition to v1.0)
- No changes to DIDs
- (need to add Connector endpoint to DID doc to use “new connector discovery

flow”)
- (DID docs will need to be updated with R25.12)

What does it mean for Data Provider & Data Consumers (what do they need to do or be
aware of)

- Not applicable

Classifica(on: INTERNAL

BDRS & Connector Discovery Service

Expectation towards BDRS according to Catena-X Release Strategy
Today, Catena-X is heavily relying on the business partner number (BPN) for business
identification as well as for technical routing. However, this close coupling has turned
out to be a suboptimal design decision. In CX-Saturn, BPN will be removed from the
EDC/DSP layer, which will work on DIDs rather than BPNs. Consequently, this has an
eFect on routing and discovery functionality as it was originally. With Saturn, we still
need to support participants, which communicate based on the old paradigm, while at
the same time enable other participants to work with the new approach.

How Backwards Compatibility is enabled in BDRS & Connector Discovery
The BDRS has not changed between the versions, as his major functionality is mapping
BPNLs to DIDs which is stable. The role has changed, i.e., based on the used DSP
version a connector will use BPNLs (0.8) or DIDs (2025-1) as basic identifier in DSP
messages. The BDRS was introduced for version 0.8 to support the DCP protocol which
requires the use of DIDs. With the consistent use of DIDs in all DSP interactions, the
need to find out the DID from the BPNL is not required in the connector for the 2025-1
implementation. But it might be, that the App has to find out the DID from the BPNL, so
the visibility level is now on App level, not on connector level.

What does it mean for Data Provider & Data Consumers (what do they need to do or be
aware of)
The changes described in the connector section needed on consumer side have to
consider this issue as well. The reference implementation provides the mentioned
helper that does the trick, but other implementations need to get the DID for a BPNL,
using a call to the BDRS.

Classifica(on: INTERNAL

Digital Twin Registry - Semantics

Expectation towards Digital Twins according to Catena-X Release Strategy
Participants of the Catena-X data space have already modeled and deployed thousands
of digital twins productively. These twins are used in various use cases.

Our participants need to understand how to deal with existing DT and how can their data
be exchanged uninterruptedly even in a multi-release environment where certain
participants upgrade to a newer digital twin model.

By design, a change of an underlying data model of a digital twin generates a new
primary key (SemanticID) of that object, because the specific model version (e.g. 1.0.2)
is part of the SemanticID. This even holds, if the Aspect Model itself is backward
compatible.

How Backwards Compatibility is enabled in Digital Twins
Supporting two semantic versions of a Submodel will technically mean to create two
versions of the DSP asset. However, newer versions of Aspect Models only need to be
oFered if requested by the corresponding use case standard in the release. It is the
responsibility of the use case to decide whether an update to the newest version of an
Aspect Models shall be performed or not. Sometimes changing an Aspect Model may
also have impact on specific calculation logic and would require new use case
implementations. This can only be decided by the use case.

What does it mean for Data Provider & Data Consumers (what do they need to do or be
aware of)

- Data providers need to determine based on the individual use cases if assets
have to be duplicated or not.

Classifica(on: INTERNAL

Example: two Submodel Descriptors for the diFerent versions of the Aspect Model need
to be provided:

"submodelDescriptors": [
 {
 "id": "e5c96ab5-896a-482c-8761-efd74777ca97",
 "semanticId": {
 "type": "ExternalReference",
 "keys": [
 {
 "type": "GlobalReference",
 "value":"urn:samm:io.catenax.material_for_recycling:1.1.0#MaterialForRecycling"
 }
]
 },

"submodelDescriptors": [
 {
 "id": "e5c96ab5-896a-482c-8761-efd74777ca98",
 "semanticId": {
 "type": "ExternalReference",
 "keys": [
 {
 "type": "GlobalReference",
 "value":"urn:samm:io.catenax.material_for_recycling:1.2.0#MaterialForRecycling"
 }
]
 },

Classifica(on: INTERNAL

Expectation towards Digital Twin Registry according to Catena-X Release Strategy
Participants of the Catena-X data space have already modeled and deployed thousands
of digital twins productively. Consequently, those digital twins have been registered into
various decentralized Digital Twin Registries across the Catena-X ecosystems.

¨ With the CX -Saturn release the DTR interfaces have been updated according to a
new Asset Administration Shell (AAS) version 3.1.

From in downward compatibility perspective, access to (under CX-Jupiter) already
registered DTR entries and DTs need to be given. Also access needs to be possible with
the AAS3.1 interfaces as well as the ones that have been implemented with CX-Jupiter
(AAS3.0).

How Backwards Compatibility is enabled in Digital Twin Registry
All APIs from v3.0 are still valid in v3.1, where v3.1 extends v3.0. Since the major version
is kept the same and only minor version is changed, no compatibility issues are there.

The DTR (AAS)-version is given in the EDC-catalog to a data consumer calling it. For
example : below property can be configured during the asset creation and the value for
the property can be set to 3.1, which denotes the IDTA AAS version.

"cx-common:version": "3.1"

Backward compatibility can also be elaborated by below mentioned points:

1. Semantic Versioning (SemVer)

The IDTA APIs adhere to Semantic Versioning (SemVer). This means:

• Versions are labeled with major.minor.patch.
• Breaking changes increase the major version.
• Non-breaking enhancements or additions bump the minor version.
• Bug fixes update the patch number.

 This structured versioning clearly communicates compatibility levels to
implementers.

2. Explicit Interface Version Declaration in Endpoints

API endpoints explicitly indicate their version through the interface attribute. For
instance, a system might declare support for:

Classifica(on: INTERNAL

{
"interface": "SUBMODEL-3.0",
"protocolInformation": { ... }
},
{
"interface": "SUBMODEL-VALUE-3.1"
 "protocolInformation": { ... }
}

This enables clients to recognize and connect to interfaces that match the version they
support, facilitating compatibility while allowing evolution.

What does it mean for Data Provider & Data Consumers (what do they need to do or be
aware of)
For Data provider relying on Tractus-X reference implementation or yaml-specification
only: The only change is that while creating the Shell, now there is a new regex pattern
for IdShort field contained in the .yaml, and hence the value of IdShort must follow that
regex. However, the constraint itself is not new (Constraint AASd-002).

Behavior of reference implementation: The existing/old IdShort values are still valid, as
there is no change in GET APIs to read the Shell content.

Classifica(on: INTERNAL

Business Partner Data Management

Expectation towards BPDM according to Catena-X Release Strategy
Business Partner Data Management (BPDM) is a crucial data space functionality
provided by the Core Service Provider B (CSP-B). Various roles, such as the Core Service
Providers, Onboarding Service Providers, Business Application Providers as well as Data
Providers & Consumers rely on the cleansed business partner data from the Golden
Record to uniquely identify the Data Space Participants in a legally secure way and thus
establish data exchange contracts between them. An upgrade to the (central) BPDM
components in CX-Saturn needs to ensure that none of the communication from the
consumers of the API breaks.

How Backwards Compatibility is enabled in Business Partner Data Management
Backward compatibility in BPDM is achieved through a multi-layered approach that
allows for a parallel phase of support for major BPDM API versions. This strategy ensures
that while new features and improvements are introduced in a new major release, such
as CX-Saturn (25.09), existing components relying on the previous release, CX-Jupiter
(24.09), continue to function without interruption.

The core mechanism for this backward compatibility is a combination of path versioning
and distinct EDC assets. The BPDM Pool and Gate API use a path versioning scheme
(e.g., https://<host>/pool/api/v6/participants for the CX-Jupiter release and
https://<host>/pool/api/v7/participants for CX-Saturn), which allows both versions of
the API to be accessible simultaneously. Instead of a single asset pointing to a single
API, there are two separate assets for the same API. Each asset is configured to point to
its corresponding versioned API path.

This distinction is further clarified by the mandatory asset attribute cx-common:version,
which indicates the API version of the API. For example, an asset representing the BPDM
Pool API for the Jupiter release would have cx-common:version=6, while the asset for
the Saturn release would have cx-common:version=7. This attribute allows consumers
of the API to discover and connect to the correct API version, enabling the simultaneous
operation of both the old and new version within the Catena-X data space.

Classifica(on: INTERNAL

What does it mean for Data Provider & Data Consumers (what do they need to do or be
aware of)
For Core Service Provider B, who operates both the BPDM Pool and the dedicated BPDM
Gates, enabling backward compatibility means that diFerent versions of the BPDM Pool
and Gate API (e.g., CX-Jupiter v6 and CX-Saturn v7) must be operated at the same time.
As implemented in the BPDM reference implementation, both API versions are part of
the same OpenAPI service instance. The API versions share the same database, which
ensures that data is held compatible between the versions, and as a result, data
migration is not required. So, the Core Service B Provider manages both versions,
ensuring consumers of the API can access consistent information, regardless of which
version their application is using.

For all consumers of the API, this strategy is crucial for operational stability. During the
parallel phase of the Jupiter and Saturn releases, a consuming party can continue to
consume data from the v6 Pool and Gate APIs even as new applications or services are
developed or have started to use the v7 Pool and Gate APIs. When updating their
software, consumers of the API can simply conclude a new data exchange contract for
the asset, which points to the /v7/ endpoint. The cx-common:version attribute provides
a clear, programmatic way to identify the correct asset for their needs. This eliminates
the risk of a breaking change and allows for a smooth, planned migration of applications
from one major release to the next, adhering to the 12-month grace period for updates.

Classifica(on: INTERNAL

Business (Use Case) Capabilities

API Changes
There is an overall expectation that APIs are being versioned. However, at this point there
is no consensus in Tractus-X community to agree on a common versioning approach.

How Backwards Compatibility is enabled in API versioning
Incremental versions of APIs need to be provided at any time when changes to an API
signature occur, which are not backward compatible (like mandatory fields, structural
changes). Consumers must select the correct API version.

What does it mean for Data Provider & Data Consumers (what do they need to do or be
aware of)
Data providers must support parallel API versions according to the Catena-X 1+1 release
strategy.

Data Consumers must be able to determine the API version that is to be used according
to the Catena-X release version that the consumer app is supporting or certified against.

Classifica(on: INTERNAL

Data Model Adjustments
Expectation towards Data Model adjustments according to Catena-X Release Strategy
Data Models will evolve over time due to new or changing business requirements.
However, data models (semantic) is what business applications use for further
processing. There, an application that is using a semantic model (data model) from the
CX-Jupiter release, MUST NOT be forced to adjust its data model due to a CX-Saturn
change. Instead, two applications conceptually need to agree on the least common
denominator when it comes to semantic data models.

How Backwards Compatibility is enabled in Data Model adjustments
Supporting two semantic versions of a Submodel will technically mean to create two
versions of the DSP asset. However, newer versions of Aspect Models only need to be
oFered if requested by the corresponding use case standard in the release. It is the
responsibility of the use case to decide whether an update to the newest version of an
Aspect Models shall be performed or not. Sometimes changing an Aspect Model may
also have impact on specific calculation logic and would require new use case
implementations. This can only be decided by the use case.

The versioning of the semantic models follow the best practices provided here:
https://eclipse-esmf.github.io/samm-specification/snapshot/appendix/model-
evolution.html

In overall:

- A patch (0.0.X) only contains corrections related to the semantic descriptions, as
typos or required clarification. But no changes of the data model itself. Hence,
remains fully compatible with the major version.

- A minor (0.X.0) mainly contains additional fields which are optional. However, the
minor changes are always compatible with its major version on the semantical
level. For example an Aspect Model v1.1.0 or v1.2.0 MUST always validate also
against v1.0.0 or all previous versions within the same major version.

Note:

- This is approach works well on the semantic level. However, the DTR / asset
registration always requires the complete version, e.g. v1.0.0. Although, version
1.1.0 is fully compatible, a solution which requests v1.1.0, but only v1.0.0 is
provided, no answer is provided, even if there is a valid and compatible version.

https://eclipse-esmf.github.io/samm-specification/snapshot/appendix/model-evolution.html
https://eclipse-esmf.github.io/samm-specification/snapshot/appendix/model-evolution.html

Classifica(on: INTERNAL

What does it mean for Data Provider & Data Consumers (what do they need to do or be
aware of)

See chapter on digital twins for details.

Classifica(on: INTERNAL

Access Policies and Usage Policies

Expectation towards Policies according to Catena-X Release Strategy
With release 25.09 (Saturn), the compliance of Access Policies and Usage Policies to the
CX-Standards, in particular CX-0152, is validated. Furthermore, the number of pre-
defined constraints has been enriched. Therefore, the following scenarios are described
to ensure that in every case provider and consumer can successfully negotiate the data
access.

1. Data Provider uses a connector certified based on Conformity Assessment
Criteria of Saturn Release (short: Saturn connector) and Data Consumer uses a
connector certified based on Conformity Assessment Criteria of Jupiter (short:
Jupiter Connector)

2. Data Provider uses a Jupiter connector and Data Consumer uses a Saturn
connector

How Backwards Compatibility is enabled in Policies
The new constraints introduced with the Saturn release are all optional. The validation
rules have also existed before, however, they were not enforced by a validation and thus
many policies had errors. For backwards compatibility, this means that a policy, which
was valid in Jupiter release is still valid in Saturn release. If the validation shows errors
for existing access and usage policies, it means, that the errors have existed before.

Based on the 2 scenarios mentioned at the beginning of this chapter, it should be
explained how the backwards compatibility is ensured.

1. Data Provider uses a Saturn connector and Data Consumer uses a Jupiter
Connector

If a Data Provider creates a new data oFer consisting of access policy and usage policy,
he can use the enriched constraints oFered in Saturn Release. In this case, the Data
Consumer who requests access to connector’s catalogue and uses a policy filter will
not accept and thus not negotiate the data oFer as the contained constraints are not
allowed from a Jupiter connector point of view. For this reason, the Data Provider MUST
create for every dataset 2 data oFers, one having policies with constraints allowed in
Saturn release and a second one having policies only using constraints allowed in
Jupiter release. As the second Jupiter compliant data oFer leaves out some contract
constraints defined in the first Saturn compliant data oFer, the delta constraints
SHOULD be

- either formulated in a referenced contract, e.g. ContractID250620197, which is
linked as right operand of the constraint “ContractReference”. This would look
like

Classifica(on: INTERNAL

- or are individually listed as single right operands of the constraint
“ContractReference” in the following way
“{{leftOperand}}/{{operator}}/{{rightOperand}}. This would mean for the newly
introduced constraints contained in the Saturn compliant data oFer:

{
 "leftOperand": "AUiliatesBpnl",
 "operator": "isAnyOf",
 "rightOperand": [
 "BPNL012345678910"
]
},
{
 "leftOperand": "DataUsageEndDefinition",
 "operator": "eq",
 "rightOperand": "cx.dataUsageEnd.unlimited:1"
}

the following syntax in the Jupiter compliant data oFer:
{
 "leftOperand": "ContractReference",
 "operator": "isAllOf",
 "rightOperand": [
 "AUiliatesBpnl,isAnyOf,BPNL012345678910",
 “DataUsageEndDefinition,eq,cx.dataUsageEnd.unlimited:1”
]
}

to ensure that both data oFers have the same legal meaning.

Comment: Enablement Service Providers oMering a Saturn connector might oMer the
feature to automatically generate the Jupiter compliant data oMer based on a manually
created Saturn compliant data oMer.

If the Data Consumer now accesses the catalog of the Data Provider with the 2
alternative data oFers for 1 dataset, there are two options:

a) If the Data Consumer uses a filter to only see data oFers, which are
acceptable based on his own Consumer Policy*, the Data Consumer sees
only the data oFer based on Jupiter constraints and negotiates it. SUCCESS

b) If no data sovereignty filters are used, the Data Consumer sees both data
oFers and needs to decide which oFer to negotiate. What happens in this
case depends on the connector, which is used by the Data Consumer. Either
a manual interaction is necessary, to decide which oFer should be negotiated
or the connector is just negotiating one arbitrary data oFer. SUCCESS
The handling how to act in case of more than 1 data oFer, fitting the filter
criteria is necessary anyway already in Jupiter connector to Jupiter connector
negotiations as it might always happen that several policies for one dataset
exist.

Classifica(on: INTERNAL

2. Data Provider uses a Jupiter connector and Data Consumer uses a Saturn

connector

If a Data Consumer requests a data oFer from Data Provider’s catalog, he sees all data
oFers as long as they are compliant to the CX-Standards, in particular CX-0152. To
ensure that no errors are in the data oFers, it is recommended that all Data Providers
check that their existing policies are compliant after the Saturn Release is introduced to
the Catena-X data space.

What does it mean for Data Provider & Data Consumers (what do they need to do or be
aware of)
Non-compliant data oBers need to be corrected:

The validation of policies is done if new policies are created. So, if Data Providers
continue to use access policies and usage policies, they have created before the Saturn
they switched to a Saturn connector, they MUST validate existing policies against the
validation oFered by a Saturn Connector. In this way, they ensure that there were no
errors in existing policies and backwards compatibility is really ensured. In case there
are errors, they need to re-create the policy and the data oFer.

To ensure that no errors are in data oFers after the introduction of the Saturn Release to
the Catena-X data space, it is recommended that all Data Providers check that their
existing policies are compliant.

2 alternative data oBers need to be created for every dataset in Saturn Connector:

Every Data Provider using a Saturn connector MUST create for every dataset two data
oFers, one using in the policies constraints allowed in Saturn release and a second one
only using in the policies only the subset of constraints allowed in the Jupiter release.

Classifica(on: INTERNAL

Business Applications
Business applications are provided in Catena-X by various diFerent software vendors.
There is no a singular time frame where application providers (re)-certify their
applications for the Saturn release. Hence, all applications that are applying Saturn
concepts need to be capable to integrate with an interoperable solution of a diFerent
software vendor, which is still only compliant to the Jupiter standards.

General Assumption:

A business application changes from Jupiter to Saturn Standard. In this cases, we shall
mandate that this business application also requires a Saturn EDC on its side (Backward
compatibility on protocol level will be ensured by EDC)

Demand & Capacity Management

- Interface has not been changed
- New status codes (error codes) have been added (improved error handling)
- Manly clarifications added
- Could potentially lead to incompatibilities

Product Carbon Footprint
- Changes in data model (mandatory / optional fields)
- Fields have been moves in the structure as well as renamed
- Currently considered to be not backward compatible

Digital Product Port
- New Aspect Model Version (changes in Data Model)

Engineering Use Cases
- New in Saturn, no compatibility to Jupiter needed

Logistics
- New in Saturn, no compatibility to Jupiter needed

Classifica(on: INTERNAL

Quality Management
- Added and updated data models
- Backward compatibility most likely not given

Puris
- Will stay with Jupiter, will not be CX-0018 Saturn compatible

Company Certificate Management

- Old standard was too vague and was leading to misinterpretation
- Standard could not be changed, but a recommendation will be added to the

standard
- API changes to be considered not backward compatible

Classifica(on: INTERNAL

Technical Overview on Compatibility

Compatibility is based on the orchestration of various diFerent APIs and concepts as
outlined in this document.

The following diagram (WIP) is going to visualize these overall concepts.

