

CX - 0113 Aspect Model ESS Incident Data Model v.1.0.0

Contact: standardisierung@catena-x.net

Table of Contents

- CX 0113 Aspect Model ESS Incident Data Model v.1.0.0
 - TABLE OF CONTENTS
 - FOR WHOM IS THE STANDARD DESIGNED
 - COMPARISON WITH THE PREVIOUS VERSION OF THE STANDARD
 - ABSTRACT
 - 1 INTRODUCTION
 - 1.1 AUDIENCE & SCOPE
 - 1.2 CONTEXT AND ARCHITECTURE FIT
 - 1.3 CONFORMANCE AND PROOF OF CONFORMITY
 - 1.4 EXAMPLES
 - 1.5 TERMINOLOGY
 - 2 ASPECT MODEL "ESS Incident Data Model"
 - 2.1 INTRODUCTION
 - 2.2 SPECIFICATION ARTIFACTS
 - 2.3 LICENSE
 - 2.4 IDENTIFIER OF SEMANTIC MODEL
 - 2.5 FORMATS OF SEMANTIC MODEL
 - 2.5.1 RDF TURTLE
 - 2.5.2 JSON SCHEMA
 - 2.5.3 AASX
 - 2.6 SEMANTIC MODEL

3 REFERENCES

- 3.1 NORMATIVE REFERENCES
- 3.2 NON-NORMATIVE REFERENCES
- 3.3 REFERENCE IMPLEMENTATIONS

ANNEXES

- FIGURES
- TABLES

ABOUT THIS DOCUMENT & MOTIVATION DISCLAIMER & LIABILITY REVISIONS & UPDATE COPYRIGHT & TRADEMARKS

FOR WHOM IS THE STANDARD DESIGNED

COMPARISON WITH THE PREVIOUS VERSION OF THE STANDARD

First version of the standard.

ABSTRACT

ESS is the abbreviation of Environmental and Social Standards. In Catena-X, the aim is to establish principles for transparent and trustful collaboration within the Catena-X network. These principles are based on legal requirements like the German Supply Chain Act (Lieferkettensorgfaltspflichtengesetz) respectively the European Due Diligence Act or the International Bill of Human Rights.

In case a violation against these laws occurs a so-called ESS incident can be created and transmitted to the Catena-X network. A Business Partner always needs to find out if he is affected by an incident. The Business Partners need to take appropriate actions and measures according to their responsibility. The Catena-X network shall support the Catena-X members in this process. The ESS data model is used for this purpose.

1 INTRODUCTION

This document describes a semantic model used in the Catena-X network.

1.1 AUDIENCE & SCOPE

This standard is relevant for the following roles:

Core Service Provider

Data Provider / Consumer

Business Application Provider

Scope of this document is to provide guidance about the structure of the data model which is used for the ESS Use case. The used API is not part of this document and is described in a separate document.

1.2 CONTEXT AND ARCHITECTURE FIT

In order to effectively manage ESS incidents in the supply chain, a standardized approach to capturing and exchanging ESS incident data is essential. A standardized ESS Incident data model provides a structured framework for collecting, organizing, and sharing ESS incident information across industries and stakeholders. By establishing a common language and format, this data model enables collaboration, taking measures to ensure that the legal regulations are followed.

1.3 CONFORMANCE AND PROOF OF CONFORMITY

As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are nonnormative. Everything else in this specification is normative.

The key words MAY, MUST, MUST NOT, OPTIONAL, RECOMMENDED, REQUIRED, SHOULD and SHOULD NOT in this document are to be interpreted as described in <u>BCP 14</u> [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

All participants and their solutions will need to prove, that they are conform with the Catena-X standards. To validate that the standards are applied correctly, Catena-X employs Conformity Assessment Bodies (CABs).

The prove of conformity for a single semantic model is done according to the general rules for proving the conformity of data provided to a semantic model or the ability to consume the corresponding data.

1.4 EXAMPLES

```
.
```

```
"flagAnonymous": false,
```

```
"incidentStatusInformation": "new",
```

```
"essIncidentIssuerLastName": "Testuser Last name",
 "rawMaterial": "Natural Rubber",
  "industry": "Extraction of raw materials",
  "subCaseOpCoIds": "9f47b3c8-b6d4-44f1-99ba-6bdb33916cac, 9f47b3c8-b6d4-44f1-99ba-
6bdb33916cad",
  "incidentSubcategory": "Child labour",
  "incidentSubject": "Child labour on rubber producer Farm A",
  "essIncidentIssuerAddress": {
   "locality": {
      "value": "Mannheim",
      "technicalKey": "BLOCK"
   },
    "country": {
     "shortName": "SM-86Y"
   },
   "postCode": {
      "value": "68161\\12",
      "technicalKey": "CEDEX"
   },
   "thoroughfare": {
     "value": "Bernstra?e",
     "number": "45",
     "technicalKey": "STREET"
   },
    "premise": {
      "value": "Werk 1",
     "technicalKey": "BUILDING"
   },
   "postalDeliveryPoint": {
     "value": "Tor 1",
      "technicalKey": "INTERURBAN_DELIVERY_POINT"
   }
 },
  "essOriginatorCompanyName": "Rubbery Ltd.",
  "essOriginatorCountrySubdivision": "BR-SP",
  "productCommodity": "Tire",
  "essOriginatorAddress": {
   "locality": {
      "value": "Mannheim",
     "technicalKey": "BLOCK"
   },
    "country": {
     "shortName": ""
   }.
    "postCode": {
      "value": "68161\\12",
     "technicalKey": "CEDEX"
    },
    "thoroughfare": {
     "value": "Bernstra?e",
      "number": "45",
      "technicalKey": "STREET"
```

```
},
    "premise": {
      "value": "Werk 1",
      "technicalKey": "BUILDING"
   }.
    "postalDeliveryPoint": {
      "value": "Tor 1",
      "technicalKey": "INTERURBAN_DELIVERY_POINT"
   }
  },
  "incidentCategory": "Environmental",
  "incidentAttachment": "telnet://192.0.2.16:80/",
  "productDescription": "Natural Rubber",
  "essOriginatorBpnA": "BPNA1234567890ZZ",
  "essIncidentIssuerPhoneNo": "+49-123-456789",
  "incidentExternalSubject": "Child labour on a rubber producer farm",
  "incidentShareFlag": false,
  "incidentExternalNotes": "Child labour at production site of a rubber producer in Brazil",
  "essIncidentIssuerFirstName": "Testuser First name",
  "essIncidentIssuerId": "9a47b3c8-b6d4-44f1-99ba-6bdb33916cac",
  "masterOpCoId": "9f47b3c8-b6d4-44f1-99ba-6bdb33916cac",
  "incidentSystemId": "123456789",
  "essOriginatorBpnL": "BPNL1234567890ZZ",
  "essOriginatorCoordinates": {
    "longitude": "-79.517415",
   "latitude": "-5.422077"
  },
  "essIncidentIssuerCountrySubdivision": "IN-AP",
  "essIncidentIssuerEmailAddress": "test@example.com",
  "essOriginatorBpnS": "BPNS1234567890ZZ",
  "systemDate": "2022-08-31T23:22:12Z",
  "partNumber": "EX123M234",
 "incidentDisplayId": "123456789101",
  "incidentDate": "2022-08-31T00:00:00Z",
  "incidentId": "9f47b3c8-b6d4-44f1-99ba-6bdb33916cac",
 "incidentDescription": "Child labour at production site of the rubber producer Farm A in
Brazil"
}
```

1.5 TERMINOLOGY

Aspect Model : a formal, machine-readable semantic description (expressed with RDF/turtle) of data accessible from an Aspect.

: Note 1 to entry: An Aspect Model must adhere to the Semantic Aspect Meta Model (SAMM), i.e., it utilizes elements and relations defined in the Semantic Aspect Meta Model and is compliant to the validity rules defined by the Semantic Aspect Meta Model.

: Note 2 to entry: Aspect model are logical data models which can be used to detail a conceptual model in order to describe the semantics of runtime data related to a concept. Further, elements of an Aspect model can/should refer to terms of a standardized Business Glossary (if existing).

ESS : ESS is the abbreviation of Environmental and Social Standards.

Additional terminology used in this standard can be looked up in the glossary on the association homepage.

2 ASPECT MODEL "ESS Incident Data Model"

Every data provider **MUST** provide the data conformant to the semantic model specified in this document.

The unique identifier of the semantic model specified in this document **MUST** be used by the data provider to define the semantics of the data being transferred.

Every certified business application using the ESS Incident Data Model data **MUST** be able to consume data conformant to the semantic model specified in this document.

Every certified business application for the ESS incident use case **MUST** be able to provide a user interface to create an ESS incident according to the data model specified in this document.

This semantic model **MUST** be made available in the central Semantic Hub.

Data consumers and data provider MUST comply with the license of the semantic model.

In the Catena-X data space ESS Incident data MUST be requested conformant to CX-0018.

The JSON Payload of data providers MUST be conformant to the JSON Schema as specified in this document.

To participate in the ESS use-case, the following single standards **MUST** be fulfilled by all participants for which the standard is relevant:

CX - 0115 CX-0115-ESSAPIStandardization

2.1 INTRODUCTION

This section specifies a data model for ESS incident.

2.2 SPECIFICATION ARTIFACTS

The modeling of the semantic model specified in this document was done in accordance to the "semantic driven workflow" to create a submodel template specification <u>SMT</u>.

This aspect model is written in SAMM 2.0.0 as a modeling language conformant to CX-0003 as input for the semantic deriven workflow.

Like all Catena-X data models, this model is available in a machine-readable format on GitHub conformant to CX-0003.

2.3 LICENSE

This Catena-X data model is made available under the terms of the Creative Commons Attribution 4.0 International (CC-BY-4.0) license, which is available at Creative Commons.

2.4 IDENTIFIER OF SEMANTIC MODEL

The semantic model has the unique identifier

urn:bamm:io.catenax.essincident:2.0.0

2.5 FORMATS OF SEMANTIC MODEL

All different formats of the semantic model can be found in the github repository.

https://github.com/eclipse-tractusx/sldt-semantic-models/tree/main/io.catenax.essincident/2.0.0

2.5.1 RDF TURTLE

The rdf turtle file, an instance of the Semantic Aspect Meta Model, is the master for generating additional file formats and serializations.

```
https://github.com/eclipse-tractusx/sldt-semantic-
models/tree/main/io.catenax.essincident/2.0.0/EssIncident.ttl
```

The open source command line tool of the Eclipse Semantic Modeling Framework is used for generation of other file formats like for example a JSON Schema, aasx for Asset Administration Shell Submodel Template or a HTML documentation.

```
https://github.com/eclipse-tractusx/sldt-semantic-
models/tree/main/io.catenax.essincident/2.0.0/gen
```

2.5.2 JSON SCHEMA

A JSON Schema can be generated from the RDF Turtle file. The JSON Schema defines the Value-Only payload of the Asset Administration Shell for the API operation "GetSubmodel".

```
https://github.com/eclipse-tractusx/sldt-semantic-
models/tree/main/io.catenax.essincident/2.0.0/gen/EssIncident-schema.json
```

2.5.3 AASX

An AASX file can be generated from the RDF Turtle file. The AASX file defines one of the requested artifacts for a Submodel Template Specification conformant to [SMT].

Note: As soon as the specification V3.0 of the Asset Administration Shell specification is available an update will be provided.

```
https://github.com/eclipse-tractusx/sldt-semantic-
models/tree/main/io.catenax.essincident/2.0.0/gen/EssIncident.aasx
```

2.6 SEMANTIC MODEL

The data model is described in SAMM . A html documentation can be generated from the rdf turtle file.

3 REFERENCES

3.1 NORMATIVE REFERENCES

- CX 0003 SAMM Aspect Meta Model v1.0.2
- CX 0004 Governance Process v1.0.1
- CX 0018 Eclipse Data Space Connector (EDC) v2.0.1
- CX 0115 CX-0115-ESSAPIStandardization v1.0.0

3.2 NON-NORMATIVE REFERENCES

[SMT] How to create a submodel template specification. Guideline. Download from: <u>https://industrialdigitaltwin.org/wp-content/uploads/2022/12/I40-IDTA-WS-Process-How-to-write-a-SMT-FINAL-.pdf</u>

3.3 REFERENCE IMPLEMENTATIONS

This section is non-normative

ANNEXES

FIGURES

TABLES

ABOUT THIS DOCUMENT & MOTIVATION

Catena-X is the first open and collaborative data ecosystem. The goal is to provide an environment for the creation, operation, and joint use of end-to-end data chains along the entire automotive value chain. All partners are on an equal ground, have sovereign control over their data and no lock-in effects occur. This situation provides a sustainable solution for the digitalization of supply chains, especially for medium-sized and small companies, and supports the cooperation and collaboration of market participants and competitors.

The ever-growing Catena-X ecosystem will enable enormous amounts of data to be integrated and collaboratively harnessed. To ensure that these complex data volumes can be sent, received, and processed smoothly across all stages of the value chain, one language for all players: common standards. The standards of the Catena-X data ecosystem define how the exchange of data and information in our network works. They are the basis for ensuring that the technologies, components, and processes used are developed and operated according to uniform rules.

Common standards create added value for all partners: Within our network, data flows more smoothly through interfaces. In addition, we avoid cumbersome individual IT solutions for sharing data with other partners. In the field of international standardization, Catena-X follows the proven international standardization institutions: ISO/IEC/ITU and CEN-CENELC/ETSI.

For users and data providers, implementation of standards will reduce the costs that would arise from adapting different systems. In addition, no important data is lost. On the contrary, it even becomes easier to collect data across companies. For operators and developers, standards will create a framework that provides reliable orientation and planning security.

The following document describes one of the standards used in the Catena-X ecosystem and the requirements needed to implement it. Here, it serves as main resource to illustrate the following data model. It contains information starting from the format of the model, up to the conceptual and physical model. The standardisation of the data model will enable faster information sharing and homogeneity throughout the entire Catena-X ecosystem.

DISCLAIMER & LIABILITY

The present document and its contents are provided "AS-IS" with no warranties whatsoever.

The information contained in this document is believed to be accurate and complete as of the date of publication, but may contain errors, mistakes or omissions.

The Catena-X Automotive Network e.V. ("Catena-X") makes no express or implied warranty with respect to the present document and its contents, including any warranty of title, ownership, merchantability, or fitness for a particular purpose or use. In particular, Catena-X does not make any representation or warranty, and does not assume any liability, that the contents of the document or their use (i) are technically accurate or sufficient, (ii) conform to any law, regulation and/or regulatory requirement, or (iii) do not infringe third-party intellectual property or other rights.

No investigation regarding the essentiality of any patents or other intellectual property rights has been carried out by Catena-X or its members, and Catena-X does not make any representation or warranty, and does not assume any liability, as to the non-infringement of any intellectual property rights which are, or may be, or may become, essential to the use of the present document or its contents.

Catena-X and its members are subject to the IP Regulations of the Association Catena-X Automotive Network e.V. which govern the handling of intellectual property rights in relation to the creation, exploitation and publication of technical documentation, specifications, and standards by <u>Catena-X</u>.

Neither Catena-X nor any of its members will be liable for any errors or omissions in this document, or for any damages resulting from use of the document or its contents, or reliance on its accuracy or completeness. In no event shall Catena-X or any of its members be held liable for any indirect, incidental or consequential damages, including loss of profits. Any liability of Catena-X or any of its members, including liability for any intellectual property rights or for non-compliance with laws or regulations, relating to the use of the document or its contents, is expressly disclaimed.

REVISIONS & UPDATE

The present document may be subject to revision or change of status. Catena-X reserves the right to adopt any changes or updates to the present document as it deems necessary or appropriate.

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be copied or modified without the prior written authorization of Catena-X. In case of any existing or perceived difference in contents between any versions and/or in print, the prevailing version of the present document is the one made publicly available by Catena-X in PDF format.

If you find any errors in the present document, please send your comments to: standardisierung@catena-x.net

COPYRIGHT & TRADEMARKS

Any and all rights to the present document or parts of it, including but not limited under copyright law, are owned by Catena-X and its licensors.

The contents of this document shall not be copied, modified, distributed, displayed, made publicly available or otherwise be publicly communicated, in whole or in part, for any purposes, without the prior authorization by Catena-X, and nothing herein confers any right or license to do so.

The present document may include trademarks or trade names which are registered by their owners. Catena-X claims no ownership of these except for any which are indicated as being the property of Catena-X, and conveys no right to use or reproduce any such trademark or trade name contained herein. Mention of any third-party trademarks in the present document does not constitute an endorsement by Catena-X of products, services or organizations associated with those trademarks.

"CATENA-X" is a trademark owned by Catena-X registered for its benefit and the benefit of its members. Using or reproducing this trademark or the trade name of Catena-X is expressly prohibited. No express or implied license to any intellectual property rights in the present document or parts thereof, or relating to the use of its contents, or mentioned in the present document is granted herein. The copyright and the foregoing restrictions extend to reproduction in all media. © Catena-X Automotive Network e.V. All rights reserved.